Loading velocity dependent permeability in agarose gel under compression.
نویسندگان
چکیده
A new approach for characterization of agarose gel permeability under compression at different loading velocities is proposed. Uniaxial compression tests on thin agarose gel specimens in a rigid porous confinement cell immersed in a water bath are undertaken. The equilibrium response of the gel, which is assumed to be achieved under extremely low-loading velocity (of the order of tens nanometers per second) is considered to be the response of the hydrated gel scaffold. The water exudation behavior from the agarose gel was extracted from the load-displacement response under various loading velocities by subtracting the equilibrium response. It was found that the pressure on water in the gel is not a linear function of loading velocity or volume flow rate and therefore, the permeability of agarose gel was observed to vary with deformation and water flow velocity. In addition, it was inferred from the analysis that at low velocities and large strain levels the gel permeability dominates the compression behavior, and at higher velocities and small strain levels the viscosity of the hydrated matrix may contribute to the load. Finally, permeability variation in agarose gel at different loading velocities is attributed to the two states (free water and bound water) of water molecules in the gel.
منابع مشابه
Convection and diffusion in charged hydrated soft tissues: a mixture theory approach.
The extracellular matrix of cartilage is a charged porous fibrous material. Transport phenomena in such a medium are very complex. In this study, solute diffusive flux and convective flux in porous fibrous media were investigated using a continuum mixture theory approach. The intrinsic diffusion coefficient of solute in the mixture was defined and its relation to drag coefficients was presented...
متن کاملExperimental method to characterize the strain dependent permeability of tissue engineering scaffolds.
Permeability is an overarching mechanical parameter encompassing the effects of porosity, pore size, and interconnectivity of porous structures. This parameter directly influences transport of soluble particles and indirectly regulates fluid pressure and velocity in tissue engineering scaffolds. The permeability also contributes to the viscoelastic behavior of visco-porous material under loadin...
متن کاملNew Insight on Deformation of Walnut/Ceramic Proppant Pack under Closure Stress in Hydraulic Fracture: Numerical Investigation
This study is an attempt to investigate the mechanical behavior of proppant packs deforming under compression loading. A generalized confined compression test (CCT) was simulated in the present study to investigate the deformation of walnut/ceramic proppants against compression. In this way, the CCT was simulated using ABAQUS explicit code. Unlike ordinary CCT, we obtained permeability of compr...
متن کاملUpregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading
OBJECTIVES The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in three-dimensional cultures. METHOD A strain comprising 10% direct c...
متن کاملEffect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells.
It is well established that mechanical loading is important to homeostasis of cartilage tissue, and growing evidence suggests that it influences cartilage differentiation as well. Whereas the effect of mechanical forces on chondrocyte biosynthesis and gene expression has been vigorously investigated, the effect of the mechanical environment on chondrocyte differentiation has received little att...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2011